【资料图】
1、因式分解公式:平方差公式:(a+b)(a-b)=a2-b2完全平方公式:(a±b)2=a2±2ab+b2把式子倒过来:(a+b)(a-b)=a2-b2a2±2ab+b2=(a±b)2就变成了因式分解,因此,我们把用利用平方差公式和完全平方公式进行因式分解的方法称之为公式法。
2、例:25-16x2=52-(4x)2=(5+4x)(5-4x)2、p4-1=(p2+1)(p2-1)=(p2+1)(p+1)(p-1)3、x2+14x+49=x2+2·7·x+72=(x+7)24、(m-2n)2-2(2n-m)(m+n)+(m+n)2=(m-2n)2+2(m-2n)2(m+n)+(m+n)2=[(m-2n)+(m+n)]2=(2m-n)2扩展资料注意点:如果多项式的首项为负,应先提取负号;这里的“负”,指“负号”。
3、如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
4、2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。
5、3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。
6、参考资料来源:百度百科-因式分解。
本文就为大家分享到这里,希望看了会喜欢。
Copyright @ 2015-2022 中南网版权所有 关于我们 备案号: 浙ICP备2022016517号-4 联系邮箱:514 676 113@qq.com